The Science of Software and
System Design

Stavros Tripakis
Northeastern University

INDIN, 24 July 2019



Science = knowledge that helps us
make predictions

* Science of software: what predictions can we make
about the programs we write?
My program terminates
My program doesn’t throw an exception
* My program satisfies properties X, Y, Z, ...

* Science of systems (safety-critical, real-time,
embedded, cyber-physical, secure, ... systems)
* Many specialized techniques (e.g., for linear systems, ...)
* Thesis: same fundamental methods as for software

Tripakis



Cyber-physical systems: present
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‘Cyber-physical” systems: future

Such systems cannot be built (not
even imagined) without software.

Everything (or almost) is software.
Software is the most complex
artifact humans have ever built.

Courtesy https://vimeo.com/bsfilms
Thanks to Christos Cassandras for recommending this video



Software and complexity

int x := 1nput an integer number > 1;

while x > 1 {
1f x 1s even

Run starting at 31: 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466
233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425
1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077

9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20
10 5 16 8 4 2

Collatz conjecture:
the program terminates for every input.
Open problem in mathematics.



Basic software and system design
methods

 Testing (trial and error)

* Proving (specification/verification-
based design, model-based design)

“Testing can be used to show

the presence of bugs, but
never to show their absence!”

[Dijkstra, 1970]




Formal verification: a successful

and practical approach
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Key Insights
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designs that cannot be found through
any other technique we know of.

Formal methods are surprisingly feasible
for mainstream software development
and give good return on investment.

At Amazon, formal methods are routinely

applied to the design of complex
real-world software, including public

cloud services.




Boeing 737 Max 8 accidents

e 2 accidents within 5 months — 346 deaths

e 737 Max 8 planes grounded world-wide since
March 2019

* Control system rather than pilot errors
* Dubious business and certification practices




Recent work topics

* The Refinement Calculus of Reactive Systems

* Synthesis of distributed protocols — with
connections to learning

* Synthesis of platform mappings — with applications
to security

* Multi-view modeling



The Refinement Calculus of
Reactive Systems (RCRS)

Joint work with Viorel Preoteasa and lulia Dragomir (Aalto)
Sponsors: Academy of Finland and NSF CPS Breakthrough




Modeling cyber-physical systems
compositionally

 Simulink: a de-facto standard
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Distinguished Artifact Award
TACAS 2018

RCRS: theory & tool for compositional
formal analysis of Simulink models

RCRS theory and component library

l

Options
(translation strategy, etc.)

——> incompatiblity detection
. - lat Formal Analyzer —— internal variable elimination
ansiator .| (built on top of
—~uil (simulink2isabelle) [— ) |sabelle the:rem —> auto generated top-level contract
Simulink Formal model prover) ——> substitutability checking
of the diagram ——> Python code generation

\/@Q/\

Downloadable from http://rcrs.cs.aalto.fi/
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RCRS theory: contract-based design

e Relational interfaces [EMSOFT’09, ACM TOPLAS’11]

— Symbolic, synchronous version of interface automata
[Alfaro, Henzinger]

— Open, non-deterministic, non-input-complete systems
(this is crucial for static analysis)

— Semantic foundation: relations

— Limited to safety properties

e Refinement calculus of reactive systems [EMSOFT’14]
— Richer semantics: predicate and property transformers
— Can handle both safety and liveness properties

— Entirely formalized in Isabelle theorem prover - 30k lines of
Isabelle code

13



Static (‘compile-time’) analysis

no sqrt of <0

Throttle Angle, ?
theta (deg) fithets) /
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Based on Simulink Demo, Copyright 1990-2010 The MathWorks, Inc.
Tripak



Simulink square root modeled with

RCRS contracts

u Y, u

Sqart

double -> double

Simulink type

uZO—»x=J;

RCRS contract:
input-receptive

uZOAx:J;

RCRS contract:
non-input-receptive

15



Catching incompatibilities statically

1 % > ‘/T >
Constant Sqrt Scope

u=-—1 uZO/\x:x/;

caught by taking the conjunction of the two formulas
and checking satisfiability

Tripakis



Inferring new contracts automatically
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Software evolution with refinement

Suppose we have designed and verified
this “steer-by-wire” system:




Software evolution with refinement




Software evolution with refinement

How to ensure properties are preserved
(substitutability)?

Tripakis 20



Software evolution with refinement

Compositional theories like RCRS / < B:Zrefines B
offer local verification methods. (local check)
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Does it work for real-world systems?

* (Case study: Fuel Control System automotive benchmark
 Made publicly available by Toyota on CPS-VO website
e Simulink model: 3-level hierarchy, 104 blocks

* Translator produces a 1660-line long RCRS theory (translation
time negligible)
e Automatic static analysis / contract inference / simplification:

<1 minute

Sample subsystem
of the FCS model

10




Automatic synthesis of
distributed protocols

Joint work with Rajeev Alur, Christos Stergiou et al (UPenn)
Sponsors: NSF Expeditions ExCAPE

23



Motivation: distributed protocols

Can we synthesize
such protocols
COMMUNICATIONS automatically? -
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Verification and synthesis in a nutshell

* Verification:
1. Design system “by hand”: S
2. State system requirements: ¢
3. Check: does S satisfy ¢ ?

e Synthesis (ideally):
1. State system requirements: ¢

2. Generate automatically system S that satisfies
¢ by construction.



State of the art synthesis

* From formal specs to discrete controllers:

#Assumptions

gl healthy & gr healthy & al healthy & ar_healthy)

] (g1_healthy | gr_healthy | al healthy | ar_ healthy)
] (!gl _healthy -> X(!gl healthy) )

] (!gr_healthy -> X(!gr_healthy) )

] ('al healthy -> X(!al healthy) )

] (lar_healthy -> X(!ar_healthy) )

Guarantees

'cl & 'c2 & !c3 & !'c4 & !'c5 & !c6 & !c7 & !'c8 & !c9 & !clO0 &
'cll & !cl2 & !cl3)

(X(c7) & X(c8) & X(cll) & X(cl2) & X(cl3))
1
1
1

(
[
[
[
[
[
#
(

c2 & c3))
cl & ¢S5 & (al_healthy | ar_healthy))

(
(
(
(
X(gl_healthy) & X(gr_healthy) ) -> X(!c2) & X(!c3) &
9
X

cd & c6 & (al_healthy | ar_healthy))
(
('c9) & X(!clO0)
] ((X(!gl_healthy) & X(!gr_healthy) ) -> X(c9) & X(clO0)

Specification (temporal logic formulas)

 Limitations:

— Scalability (writing full specs & synthesizing from them)

Controller (state machine)

— Not applicable to distributed protocols (undecidable)

Tripakis
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Synthesis of Distributed Protocols from
Scenarios and Requirements

* |dea: combine requirements + example scenarios

nd : — : .
: : -7 : ] : send - :
n(l<_3 » \ \ del - D1 :
\ rrrrr ut : : e meout \
: : deliver /II\‘ _>' ”m E_»delu
. w : . . . . L L
/ : *deliver w o, : >L-\<
: : : et — 2 : : :
: : : ay = - : B .
: : / \ end :
send_ . : . : : e 5 :
- ‘p(,\~ end : : : i
: ©deli

Synthesis tool

example scenarios formal requirements

(safety, liveness,

These are typically deadlock-freedom, ...)

not complete specs!

synthesized
protocol
(state machines)
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Scenarios: message sequence charts

* Describe what the protocol must do in some cases
* Intuitive language = good for the designer
* Only a few scenarios required (1-10)

Sender Receiver Sender Receiver Sender Receiver Sender Receiver
. . send - : send : send

send : -« 4 : D : «__ :

4_,,]70\* \ \ \

. . . . . . . deliver . . .
. . . deliver . . . deliver
: * deliver : ao P . a0 -> . a0 >
. ao_ > / / /
/ send - : send : : :
- 0 : pl\" send<_; :

send<_; » : \ : : . deliver ; 21 :
’ 1 : timeout : : . 3 :-> timeout :\:

—l.

2

deliver

—=

o deliver . :
deliver timeout :
- !

\
\/

ay

Va5 a
Do an
ao

send - . Send<_5
* X . send : : an - x
\ <+ 7 : / ><
* deliver \ : . : » deliver
A)‘» l a0 oy eliver SenCZ‘-:pO\‘j .‘/:->
V.' \4 -/ :_sdeli’ver . :

Scenario 1 Scenario 2 Scenario 3 Scenario 4
(nominal) (msg loss) (ack loss) (delay)



Synthesis becomes a completion problem

Incomplete automata learned from first scenario:

deliver!
send) O\aéi? o? : N!
ABP ()//// ABP
—> .
Sender )/Q ay / Receiver
\Q p1! send)! \Q deliver! C p1?

O

Automatically completed automata:

- ay?
O/_\ delzver' '
send! .
ABP Q/ timeout? ABP
— / 7
Sender ag? Receiver
aii)\%\/) send! deliver! C p/17

timeout?



Results

e Able to synthesize the distributed Alternating Bit Protocol (ABP)
and other simple finite-state protocols (cache coherence,
consensus, ...) fully automatically [HVC’14, ACM SIGACT’17].

 Towards industrial-level protocols described as extended state

machines [CAV’15].

Gwait (Pm, Po, flag, turn)

waltingy, -
requestp, !

flag[Pm| := false gerit (Pm, Po, flag, turn)
criticalpy!

Critical section

flag[Po] A turn = Po

waltingp, !
requestp, !
flag[Pm] := true turn := Po

)
—flag[Po] V turn = Pm
criticalpn!

Critical section

30



Algorithmic technique: counter-example guided

completion of (extended) state machines

 Completion of incomplete machines: find missing transitions,
guards, assignments, etc.

( _ Constraints @q
Add input, on unknown functions
determinism, and
SYMIMELTY CONSETAINES  |gruurrrsresssessssssersarsrssessenserns i Environment
. ; A den iy ESM-S F
Yes?
l Interpretation
for unknown Y " ¥ -
SOIZG ConSt?Iﬁ,S: o functions Instantiate protocol Model check
rocuce mo e. OF : with interpretation protocol
unknown functions X )
No?
No completion o
( = ) [ Analyze errors & Yes?
. Errors?
L update constraints
No?

Correct
Fig. 3: Completion Algorithm. [Interpreta-tion]




Synthesis of platform mappi
with applications to securi

Joint work with Eunsuk Kang (NSF ExCAPE project),
and Stephane Lafortune (UMichigan)

Sponsors: NSF SaTC program

Thanks to Eunsuk Kang for several slides

ngs
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Motivation: security

Third-Party Authentication

’,,ﬁr\ Sign Up / Sign In

Sign in using your account with

Facebook  Google
twiktter YaHOO!
1~ OpeniD  Linkedf}

From a Save energy 123 account...

® signin | O Create an account

OAuth: Widely adapted, support from major vendors
Well-scrutinized & formally checked

33



Motivation: security

CRITICAL HOLES IN OAUTH, OPENID COU
REDIRECT USERS

Chris Brook

UPDATE — A serious vulnerability in the OAuth and OpenlID protocols could lead to
complications for those who use the services to log in to websites like Facebook,

Google, LinkedIn, Yahoo, and Microsoft among many others.

Study of OAuth providers [Sun & Beznosov, CCS12]
Majority vulnerable (Google, Facebook,...)



The heart of the problem

Application Desi - : :
bpiication Design Designers think at high-level

Protocols, APIs, workflows,
use cases, etc.,

lgnore irrelevant, details
‘ Deployment

Attacks may exploit details
absent at high-level
Unwanted features

Unknown environment
Hidden interface/entry points

35
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Our approach: modular modeling with

Application Design Mappings

mapping composition
operator

— [P llm @
m

Examples of decisions captured by mappings:

* should a certain protocol message be
implemented as an HTTP request? implementation

* with cookies to store secret values? model

e with query parameters?

Possible applications beyond security.
N

Platform

36



Verification and synthesis problems
oNn Mappings

* Verification: given application model P, platform
model 0, mapping m, and some specification ¢,
check that the system P ||,,, Q satisfies ¢.

* Synthesis: given P, Q and ¢, find mapping m, such
that P ||,,, Q satisfies ¢.



Contributions [cAV 2019]

* Algorithm and tool for automated mapping
synthesis:

* Counter-example guided symbolic search over possible
candidate mappings

e Real-world case studies: OAuth 2.0 and 1.0

* Tool able to automatically synthesize correct mappings
for both OAuth 2.0and 1.0

* Synthesized mappings describe mitigations to well-
known attacks (e.g., session swapping, covert redirect,
session fixation)

* Several 1000s LOC of application and platform models:
OAuth, HTTP server, HTTP browser, ...



Multi-view modeling

Joint work with Jan Reineke (Saarland), Christos Stergiou (now at
Google), and Maria Pittou (ex PhD student)

Part of NSF Project COSMOI



Multi-View Modeling

Complex system -> many stakeholders -> many design teams -> many
viewpoints -> many perspectives -> many models = views

. 1o | .
g T
| m 0@
S
Low-level Physical
controllers Supervisory dynamics
Simulink controllers Modelica
Rhapsody/
SYSML 40



Problem: View Consistency

Partially overlapping content -> potential for contradictions

Industry: “system integration is the biggest issue”

41
Picture due to Martin Torngren



What is view consistency, formally?




From (separate) components to
(overlapping) views

* Refinement theories
* model interacting but separate components

\
)

* Multi-view modeling
* Views model overlapping aspects

¥
—




, , [TACAS’14, SAMOS’16,
Contributions FACS'16, SoSyM'18]

An abstract formal framework for reasoning about multi-view
modeling

* Systems and views are sets of behaviors, but generally in different
domains.

* Abstraction functions map system behaviors to view behaviors.
* View consistency, synthesis, etc problems defined in this framework.

Instantiation of the framework for various types of discrete
systems and different types of abstraction functions:

* Symbolic transition systems, finite regular and Buchi automata (regular
and omega-regular languages).

* Projections, periodic sampling, ...

Study decidability and complexity of checking consistency and
synthesizing a witness system.



SOME THOUGHTS ON
EDUCATION



What is the mathematics of the
science of software?

* Logic

46



Systems theory (classic)

1979 1983

Study specific classes of systems (e.g., linear/non-linear differential equations)

Tripakis 47



Systems theory (modern)

PRINCIPLES OF
CYBER-PHYSICAL SYSTEMS
RAJEEV ALUR

and many, many
others ...

Principles of Model Checking
Christel Baier and Joost-Pieter Katoen

2008 2015

Study general and fundamental concepts to all systems (e.g., states, transitions,
reachability, safety, liveness, fairness, correctness, refinement, compositionality, ...)

Tripakis 48



PERSPECTIVES
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New challenges and opportunities

 Can Al benefit from the science of software,
and how?

* Can the science of software benefit from Al,
and how?



Can Al benefit from the science of

RAND

CORPORATION

software?

* Yes.

e Al software is untestable.

 Formal verification of Al
software is needed.

Driving to Safety

How Many Miles of Driving Would It Take to Demonstrate

Autonomous Vehicle Reliability?

Nidhi Kalra, Susan M. Paddock

. Key findings

e Autonomous vehicles would have to be driven hundreds
of millions of miles and sometimes hundreds of billions
of miles to demonstrate their reliability in terms of fatali-

ties and injuries.

e Under even aggressive testing assumptions, existing

fleets would take tens and sometimes hundreds of years

n the United States, roughly 32,000 people are killed and

more than two million inj ured in crashes cvery year (Bureau

of Transportation Statistics, 2015). U.S. motor vchicle
crashes as a whole can pose economic and social costs of more
than $800 billion in a single year (Blincoe et al., 2015). And,
more than 90 percent of crashes are caused by human errors
(National Highway Trafhic Safery Administration, 2015)—such
as driving too fast and misjudging other drivers’ behaviors, as

well as alcohol impairment, distraction, and fatiguc.

52



Can the science of software benefit

from Al?
* Yes.

* Model learning (and its connections to
machine learning).

e Data-driven and Model-based Design (DMD)

— Top-down: from specification to implementation
(specialization)

— Bottom-up: learning from examples
(generalization)



An example of DMD: combining
synthesis with learning

* Synthesis: given specification ¢, find system S,
suchthat$§ E ¢

* Learning: given set of examples E, find system S,
such that S is consistent with E and “generalizes
well” ...

* Synthesis from spec + examples: given set of
examples E and specification ¢, find system §,
such that S is consistent with £ and S E ¢

— Key advantage: ¢ guides the generalization!



Conclusions

We live in the world of software (and models of
other systems, which are also software)

Software is complex => difficult to get right

Strong predictions about software require a hard
science => formal methods, verification, synthesis

Al/learning brings new challenges and
opportunities



Thank you

e Questions?



